Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients.

نویسندگان

  • Douglas E Befroy
  • Kitt Falk Petersen
  • Sylvie Dufour
  • Graeme F Mason
  • Robin A de Graaf
  • Douglas L Rothman
  • Gerald I Shulman
چکیده

Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type 2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes. To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using (13)C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive control subjects underwent (13)C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of (13)C label into C(4) glutamate during a [2-(13)C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by 30% in lean, insulin-resistant offspring (59.8 +/- 5.1 nmol x g(-1) x min(-1), P = 0.02) compared with insulin-sensitive control subjects (96.1 +/- 16.3 nmol x g(-1) x min(-1)). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial oxidative phosphorylation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents.

To further explore the nature of the mitochondrial dysfunction and insulin resistance that occur in the muscle of young, lean, normoglycemic, insulin-resistant offspring of parents with type 2 diabetes (IR offspring), we measured mitochondrial content by electron microscopy and insulin signaling in muscle biopsy samples obtained from these individuals before and during a hyperinsulinemic-euglyc...

متن کامل

“Deficiency” of Mitochondria in Muscle Does Not Cause Insulin Resistance

Based on evidence that patients with type 2 diabetes (T2DM), obese insulin-resistant individuals, and lean insulin-resistant offspring of parents with T2DM have ~30% less mitochondria in their muscles than lean control subjects, it appears to be widely accepted that mitochondrial "deficiency" is responsible for insulin resistance. The proposed mechanism for this effect is an impaired ability to...

متن کامل

Skeletal muscle mitochondrial dysfunction & diabetes.

Skeletal muscle insulin resistance is a key contributor to the pathophysiology of type 2 diabetes. Recent studies have shown that insulin resistance in a variety of conditions including type 2 diabetes, ageing and in offspring of type 2 diabetes is associated with muscle mitochondrial dysfunction. The important question is whether insulin resistance results from muscle mitochondrial dysfunction...

متن کامل

Decreased Insulin-Stimulated ATP Synthesis and Phosphate Transport in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Parents

BACKGROUND Insulin resistance is the best predictor for the development of type 2 diabetes. Recent studies have shown that young, lean, insulin-resistant (IR) offspring of parents with type 2 diabetes have reduced basal rates of muscle mitochondrial phosphorylation activity associated with increased intramyocellular lipid (IMCL) content, which in turn blocks insulin signaling and insulin action...

متن کامل

Increased collagen content in insulin-resistant skeletal muscle.

Oversupply and underutilization of lipid fuels are widely recognized to be strongly associated with insulin resistance in skeletal muscle. Recent attention has focused on the mechanisms underlying this effect, and defects in mitochondrial function have emerged as a potential player in this scheme. Because evidence indicates that lipid oversupply can produce abnormalities in extracellular matrix...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 56 5  شماره 

صفحات  -

تاریخ انتشار 2007